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Abstract—Balancing occupant comfort while minimizing en-
ergy consumption is not trivial. Traditional methods rely on
environmental control guided by occupant feedback but often
fall short in addressing individual preferences effectively. This
paper presents DigiGuide, an innovative system that leverages
Digital Twin (DT) methodologies combined with multi-objective
optimization algorithms to guide occupants to spaces that best
meet their multi-variant comfort needs. DigiGuide forecasts
future indoor environmental conditions and occupant states in
real-time by relying on the DT of the physical environment. It
then leverages a genetic algorithm to simultaneously optimize
occupant movement guidance to balance comfort needs with
energy efficiency. DigiGuide is validated using two realistic large-
scale scenarios: a co-working open space and an airport in Paris,
France. Results demonstrate that DigiGuide achieves an average
of 18.2% lower discomfort with 8.6% lower energy consumption
compared to baseline approaches.

Index Terms—Digital Twin, Energy Efficiency, Occupant Com-
fort, Multi-objective Optimization

I. INTRODUCTION

Buildings are among the largest contributors to global
energy consumption [1], in part, due to the need for in-
door comfort to support occupants’ productivity and well-
being [2]. Nevertheless, building occupants remain dissatisfied
with indoor environments due to thermal conditions and noise
levels [3]. Balancing energy savings with diverse, subjective
occupant comfort needs (e.g., one person may prefer warmth
and quiet while another desires a cooler, more social environ-
ment) is inherently challenging [4].

Traditional approaches adjust indoor environments based
on occupant discomfort [5]. IoT devices are widely used to
estimate comfort by analyzing occupants’ activities, feedback,
and body temperature [6]–[8]. However, accommodating di-
verse comfort preferences is challenging, as no single setting
satisfies everyone. Additionally, indoor comfort is shaped
by multiple interconnected factors. For example, adjusting
temperature settings can unintentionally affect noise levels and
perceived crowdedness, as occupants tend to gather in cooler
areas during warmer months. Moreover, factors like noise and
crowdedness cannot be directly regulated based on occupant
feedback as easily as temperature.

Alternative approaches involve occupant guiding systems,
which direct individuals to locations—such as specific rooms
or workspaces—that better suit their comfort needs [9]. Pre-
vious research has explored how directing individuals based

on their environmental preferences can enhance both comfort
and energy efficiency [10], [11]. However, most work focuses
solely on thermal comfort, overlooking the dynamic and
multifaceted nature of occupant comfort. Also, they do not
account for the dynamic environment and its impact. For
instance, guiding occupants to one location may affect the in-
door environment and comfort levels (e.g., noise/crowdedness
levels) of other people. To address this, Digital Twin (DT)
solutions (digital replicas of physical buildings and its occu-
pants) have been leveraged to model the dynamic nature [12],
[13]. However, to the best of our knowledge, no existing oc-
cupant guiding system addresses the complex Multi-Objective
Optimization (MOO) problem of balancing dynamic, multi-
factored occupant needs with energy consumption.

This article presents DigiGuide, a novel occupant guiding
system that leverages DT methodologies and MOO techniques.
In particular, DTs are used to continuously model building
environments and occupant comfort, allowing DigiGuide to
forecast the states of the building and occupants. This enables
both occupant guidance and environmental control guidance
generation while performing self-evaluation and adaptation.
DigiGuide proactively (prior to discomfort detection) guides
occupants to proper locations by balancing multi-variant com-
fort needs of occupants such as thermal comfort, acoustic
comfort and crowdedness together with energy consumption.
The key contributions of this paper are:

• A cross-building solution to jointly optimize multi-
variant comfort and energy consumption. DigiGuide al-
lows building administrators to prioritize energy savings
or different occupant comfort needs (§III).

• A formal building and occupant model used to postulate
the multi-objective optimization problem (§IV).

• A DT-based approach to accurately estimate and predict
occupants’ comfort in dynamic indoor environments, en-
abling proactive adaptation to occupants’ comfort (§V).

We validate DigiGuide in two large-scale scenarios, a co-
working open space building and an airport, by defining DTs
based on real buildings and realistic inhabitant behavior. Our
experiments demonstrate that DigiGuide outperforms baselines
in terms of comfort and energy savings, achieving a better
balance across multiple objectives.



II. RELATED WORK

Recent advancements in Smart Computing and IoT have
spurred considerable research aimed at enhancing energy
efficiency and occupant comfort in buildings [14]–[16]. Many
existing works seek to regulate the indoor environment using
periodic comfort surveys or sensor-based assessments [17].
Individual comfort is aggregated to regulate environmental
parameters such as indoor temperature setpoint [5], [18]. How-
ever, when occupants have different preferences, whichever
preference is met will make another part of the occupants
uncomfortable.

To address this, recent research has explored comfort
satisfaction by moving people to spaces that match their
preferences. For example, Xia et al. [19] propose a system
that moves people inside the building to compensate for
environmental control to optimize energy and comfort, but
their method does not model how the presence of guided
occupants affects the comfort of others in the destination
space. Berelson et al. [20] match individuals to specific desks
based on environmental sensing on temperature, lighting, and
noise levels and prior comfort feedback. Similarly, Sood et
al. [9] implemented an occupant guiding application in a real
building to allocate spaces based on occupant preferences.
While these approaches personalize allocation, they assume
a relatively stable indoor environment and do not consider the
interdependencies between comfort factors or their dynamics.
For example, a space may initially align with an occupant’s
comfort preferences, but by the time the person arrives, dy-
namic factors such as increased occupancy or shifting sunlight
may change the conditions and lead to discomfort for all
occupants.

Another strand of work explores how grouping people with
similar preferences can improve comfort and energy outcomes.
Nagarathinam et al. [10] shows that a room facing the sun can
operate at a higher setpoint with reduced energy cost, thereby
potentially enhancing both energy efficiency and comfort by
guiding occupants who prefer warmth to sun-faced rooms and
vice versa. Ding et al. [11] evaluate the impact of guiding
people on energy efficiency and thermal comfort by clustering
all the occupants based on the number of available rooms
and matching them to each room. Additionally, [21] guides
people to comfortable spaces considering occupant diversity
by differentiating long-term and short-term occupants. Despite
these advancements, these approaches focus solely on thermal
comfort and its associated energy consumption, often assum-
ing static and predefined occupant arrivals and preferences,
which limits their applicability in dynamic real-world building
environments with fluctuating occupancy and evolving comfort
needs.

To the best of our knowledge, DigiGuide is the first
system to integrate Digital Twin-based forecasting with
multi-objective optimization to simultaneously guide occupant
movement and recommend environmental adjustments across
multiple comfort dimensions while minimizing energy con-
sumption.

III. THE DIGIGUIDE APPROACH

A. DigiGuide Overview

DigiGuide postulates the problem of guiding people to
appropriate locations and modifying environmental conditions
based on comfort and energy requirements as an MOO prob-
lem. Then, it leverages a genetic algorithm (GA) to solve it.
This way, DigiGuide generates three types of guidance: (1)
guiding occupants to suitable locations based on their comfort
needs, (2) re-guiding occupants to other locations in response
to changes in the environmental conditions to enhance overall
occupant comfort, and (3) providing environmental control
recommendations to building administrators, such as temper-
ature adjustments. To this end, DigiGuide uses three main
components (see Figure 1):

Fig. 1: Overview of the DigiGuide System.

Scenario Digital Twin captures real-world building structure,
dynamic environmental conditions, and occupant behavior. It
continuously observes and records the indoor environment
(e.g., temperature, noise, crowdedness), occupant interactions
(e.g., locations, comfort levels, environmental impact), and
energy consumption. By analyzing current conditions along-
side historical data, it provides predictive insights for future
condition estimation. For instance, while indoor noise levels
generally correlate with the number of occupants, the exact
relationship varies across rooms due to differences in room
size and usage. By periodically analyzing historical records,
this component identifies these relationships for each room.
This analysis is stored in Scenario DT so that the Trend
Predictor component can leverage it for rapid predictions. Built
on Co-zyBench [5], the Scenario DT supports high-fidelity
thermal modeling of the building and occupants, including heat
gain/loss, energy consumption of Heating Ventilation and Air
Conditioning (HVAC) systems, as well as occupant movement
and thermal comfort. However, to provide a comprehensive
comfort assessment, DigiGuide extends its capabilities beyond
thermal modeling by incorporating additional environmental
factors such as crowdedness and acoustic environment (see
Section III-B).
Trend Predictor forecasts indoor environmental conditions,
occupant comfort levels, and energy consumption utilizing
insights from Scenario DT. It anticipates the consequences of
implementing the generated guidance. Specifically, occupant
comfort levels are estimated based on the predicted future
indoor conditions and individual comfort needs. For example,
to predict the noise level change in the room if guiding
occupants there, it is based on the insights from Scenario DT
about how much noise an occupant would generate and the



resulting overall noise level. Then it estimates the acoustic
comfort of the guided people and all occupants already in the
room based on the predicted noise level. Energy consumption
is also predicted by leveraging historical records. For example,
a linear regression model is utilized to analyze the relationship
between HVAC energy usage and temperature differences
between outdoor temperature and indoor setpoint [22].
Guidance Generator comprises an optimizer for movement
guidance and environmental control guidance. The Movement
Optimizer assists both occupants seeking a new room, as
well as those already inside but experiencing discomfort and
wanting to change to another room. It determines optimal
locations by balancing multiple objectives and constraints, in-
cluding multiple comfort needs, energy efficiency, and spatial
limitations. Using a genetic algorithm, it seeks the optimal
solution for the MOO problem. The optimizer employs what-
if-analyses with the Scenario DT and Trend Predictor to assess
the generated guidance and update it accordingly. Given the
dynamic nature of buildings and occupant needs, comfort
levels may change over time. For instance, mood fluctuations
can influence thermal preferences. Regularly adjusting indoor
conditions is essential for maintaining comfort while reducing
occupant movement. The Environment Optimizer identifies
optimal environmental conditions and generates environmental
adjustments to optimize overall occupant comfort for each
space.

B. DigiGuide Comfort Definitions and Implementation

Before deployment, DigiGuide undergoes an initialization
phase with DT modeling and configurations. The Building
DT is configured with static building information, including
spatial layout, climate type, and energy-related device capa-
bilities such as HVAC capacity and energy efficiency. The
Occupant DT is modeled with occupant comfort needs and
comfort levels. To ensure DigiGuide generalizes its guidance
generation to accommodate diverse building and occupant
scenarios, comfort objectives can be configured by modeling:
(1) current environmental conditions, and (2) occupant comfort
and its needs. We present the modeling of several key comfort
objectives, including thermal comfort, acoustic comfort and
crowdedness, to illustrate how they are configured.

Thermal conditions are represented by indoor temperature,
which is dynamically adjusted by HVAC systems. Noise level
is measured using the sound pressure level (SPL) in decibels
(dB). The total SPL in a room is derived by aggregating noise
from multiple sources [23], including static background noise
(e.g., indoor equipment and external noise) and occupant-
generated sounds. This is computed using:

LΣ = 10 log10

(
10

L1
10 dB + 10

L2
10 dB + · · ·+ 10

Ln
10 dB

)
dB. (1)

where LΣ is the total SPL and L1, L2, . . . , Ln are sound
levels from different sources. Crowdedness is modeled based
on room area, room type, and occupant number. The
room’s capacity is first estimated based on the room size
and predefined required area per occupant: capacity =
room size/area per occupant. For example, each occupant

may require 5m2 in office rooms while 2m2 in meeting
rooms. Using this estimate, crowdedness is then defined as:
crowdedness = occupant number/capacity.

We classify occupant comfort needs into three types: (1)
preferences, such as thermal preferences, where deviations
cause discomfort; (2) tolerances, such as noise and crowd-
edness, where discomfort occurs only beyond a threshold;
and (3) general expectations, such as walking distance, which
do not involve a strict comfort threshold but should be
minimized (or maximized) to improve overall satisfaction. We
categorize each need into several levels so that occupants can
provide preferred levels rather than exact numbers. Thermal
preferences are divided into three categories: preference for
warmer, neutral, or cooler. Noise and crowdedness tolerance
are each classified into four levels to reflect varying occupant
sensitivities.

We map the actual comfort level of an individual located in a
certain space based on their comfort needs and environmental
conditions. Occupant thermal comfort level is evaluated using
the Thermal Sensation Vote (TSV) 7-point scale [24], which
quantifies thermal sensation from -3 (cold) to +3 (hot). We
create the vote sheet as shown in Table I using previous
surveys related to thermal comfort [25], [26]. For example, at
23 degrees, people who prefer warmer feel slightly cold (-1),
while people who prefer neutral and cooler feel comfortable
(0). For acoustic and crowdedness comfort, we evaluate the
extent to which the space’s noise and occupancy levels exceed
an individual’s tolerance. Therefore, discomfort is recorded
only when these levels surpass the individual’s preferred
threshold. Finally, walking distance is modeled as the meters
an occupant averagely needs to move to the destination.

The DigiGuide system implementation is available as open-
source at https://github.com/satrai-lab/DigiGuide1

TABLE I: Temperature preference matrix.

19°C 20°C 21°C 22°C 23°C 24°C 25°C 26°C 27°C 28°C 29°C
Warm Preferred -3 -2 -2 -1 -1 0 0 0 1 1 2

Neutral -2 -1 -1 0 0 0 0 1 1 2 2
Cold Preferred -1 -1 0 0 0 1 1 2 2 3 3

IV. SYSTEM MODEL AND PROBLEM DEFINITION

We formally define the model for the building and its
occupants in DigiGuide. Then, we present the formulation of
the selection of the best occupant guidance plan for appropriate
places and environmental settings as an MOO problem.

A. Building and Occupant Models

As shown in Figure 2, we model the building as a tuple
B = (S,P, C,U ,X , E), where S is the set of spaces within
the building (including rooms and other indoor spaces and
external areas). A space s = (sid, stype,Ps, Cs) where stype
defines the space type (e.g., office room, meeting room) and
Ps, Cs are subsets of P and C. P is the set of Points of Interest
(POI), which are physical locations relevant to environment

1DigiGuide implementation details is available in the GitHub repository.



Fig. 2: Illustration of the DigiGuide System Model.

monitoring and regulation or occupant movement. One room
may contain multiple POIs to capture environmental variations
in different areas. Or a corridor can be segmented into POIs
to model realistic movement trajectories, where each room
entrance and corridor turn is defined as a POI, ensuring
occupants move following feasible paths. In addition, we
assume that S always contains a special space s out which
represents anything outside of the building. This has one POI
p out. A POI is defined as p = (pid, ploc, psize, Ep), where
ploc specifies its spatial coordinates and psize represents the
total area; Ep ⊆ E represents the set of environmental factors
(e.g., temperature, noise) measured or controlled at p. Each
c ∈ C denotes the spatial connections between POIS, modeled
as a tuple c = (pi, pj , w), where w represents the distance
between point pi and pj .
U is the set of occupants inside the building or those who are

planning on being in the building. Each occupant is modeled as
u = (uid, uloc,Ru, x), where uloc is the current location that
is associated with the closest POI and Ru = {(etype, req)} is
the set of comfort needs. For each environmental factor etype,
req specifies the desired level. Moreover, x defines the event
that the occupant attends.
X is the set of events occurring in the building. An event

represents a specific occurrence (e.g., individual work and
meetings) that occupants attend. Each event is defined as
x = (xid, xtype, xweight), where xtype denotes the event type,
xweight specifies priority of occupant comfort needs for each
event. For example, attending meetings may weaken the need
for room crowdedness.
E is the set of observed environmental factors, e.g., in-

door temperature and noise level. An environmental factor is
defined as e = (eid, etype, eval, obs), where eval provides
a function for evaluating the occupant comfort levels that
correspond to this factor type etype and current observation
obs.

Moreover, time is divided into a series of time periods T =
{1, 2, . . . , T}. The location for each occupant over time is
modeled by the binary decision variable li,p,t ∈ {0, 1} which

equals 1 if occupant ui at time t is in POI p and 0 otherwise.
Each occupant must be at exactly one POI (inside our outside
the building) at each time slot:∑

p∈P
li,p,t = 1, ∀ i ∈ U , ∀ t ∈ T . (2)

Each occupant’s discomfort is quantified based on their
comfort needs R for each environmental factor. Specifically,
the discomfort experienced by occupant u at POI p and time
t for feature e is defined as:

du,e(p, t) = e.eval(p, req, t). (3)

B. Multi-objective Optimization Problem

DigiGuide generates a set of guidance G that comprises
three categories:

– Gm = {(t, ui, psrc, pdst)} is the movement guidance.
Here, psrc and pdst are the current and destination POIs.
The guidance must satisfy: (i) pdst is appropriate for the
occupant’s event type; (ii) for occupants with the same
event, the guidance is consistent; (iii) psrc ̸= pdst.

– Gr = {(t, ui, psrc, pdst)} is movement re-guidance for
occupants experiencing discomfort. In this case, if occu-
pant ui feels uncomfortable at psrc (i.e., di,e(psrc, t) >
0,∀e ∈ E), then the destination must satisfy

di,e(pdst, t
′) < di,e(psrc, t

′), (4)

where t′ is the time slot when ui will arrive at pdst.
Additionally, psrc ̸= pdst and pdst must be of the room
type that ui is requesting.

– Ge = {(t, psrc, setpoint)} is environment control guid-
ance for regulating the environment. This guidance rec-
ommends that a factor ei ∈ E be set to a specific setpoint
and it must ensure that the adjustment leads to reduced
discomfort for the controllable feature, i.e.,∑

u′∈U ′

du,e(p
′
src, t) <

∑
u∈U

du,e(psrc, t), (5)



where p′src is the POIs that are influenced by device
di with the environment state after adjustment and U ′

represents the occupants that will be in the POIs when
the adjustment works.

Together, these decisions define the complete guidance set:
G = {Gm, Gr, Ge}. We define the overall discomfort led by
the guidance G of all occupants on the environment factor e
as:

fe(G) =
∑
t∈T

∑
ui∈U

∑
p∈P

di(p
′, t′)× li,p,t′ , (6)

where t′ is the estimated time when the occupants arrive
at the guided POIs or the time the environmental control is
conducted, while p′ refers to the POI with the estimated future
environmental conditions.

The generated G should minimize the overall discomfort of
all environmental factors and energy consumption:

min
G

(
f1(G), f2(G), ..., f|E|(G), energy) (7)

V. MULTI-OBJECTIVE GUIDANCE GENERATION

A fundamental challenge in MOO for occupant guidance
lies in its inherent computational complexity. The number of
feasible movement guidance solutions grows exponentially.
Consider a large office building where office rooms are seg-
mented into |P| of POIs in total. Guiding |U| occupants to
these POIs has |U||P| solutions. Exhaustively searching to
find the optimal guidance is computationally costly and hence
infeasible since a person looking for a room might not be
willing to wait minutes to obtain an answer. Additionally,
occupant movement affects indoor environmental conditions
and, consequently, the overall discomfort of all occupants
f(G). Therefore, evaluating guidance solutions requires com-
prehensive evaluations that estimate how guidance influences
the future comfort of all occupants and energy consumption,
rather than focusing solely on individual satisfaction.

To address this, DigiGuide employs DTs and a heuristic
genetic algorithm based on NSGA-III (Non-dominated Sorting
Genetic Algorithm III) [27], a well-established method for
solving MOO problems. This algorithm iteratively evolves a
population of candidate solutions through selection, crossover,
and mutation, where solutions are preferred for the next
generation if there are no other solutions that are better in
all objectives. DigiGuide first generates Gm to guide newly
arriving people and occupants who are comfortable but need
to change location, for example, an occupant in their solo
work room seeking a meeting room for a meeting. Next,
the Trend Predictor, in conjunction with the Scenario DT,
evaluates all occupants’ potential future comfort levels if Gm

is to be implemented. The comfort is predicted considering
their individual comfort needs and the environmental changes,
that occur naturally (e.g., temperature might get warmer in the
middle of the day) or are caused by Gm (e.g., the noise and
crowdedness levels of a room may change due to increased
occupancy). If any occupants are experiencing (or predicted
to experience) discomfort, Gr is generated to re-guide them
to more comfortable locations. Finally, DigiGuide generates

optimal environment control guidance Ge for each location
based on occupant comfort needs.
Computing movement guidance and re-guidance plans.
Algorithm 1 shows how DigiGuide uses NSGA-III to generate
movement guidance. Given a set of occupants that need
to be guided U , the Building DT B, environmental factors
E , and events X , the algorithm first groups occupants by
event to account for different comfort needs and destination
requirements (Lines 1-4). For instance, multiple occupants
attending a meeting share a single meeting room with lower
priority on crowdedness levels.

Algorithm 1 Movement Guidance/Re-guidance Generation

Input: Occupants to guide U , Building DT B, Environmental
factor E , Events X , Generation number gen, Population
size pop

Output: Optimized movement guidance or re-guidance G
1: for u ∈ U do
2: x← FindEvent(u,X )
3: Attend[x]← Attend[x] ∪ u
4: end for
5: for x ∈ Attend do
6: S0 ← RandomSolutions(x.solution len, pop)
7: for s ∈ S0 do
8: Ps ← TrendPredict(s)
9: fcomfort(s)← EvalComfort(E ,Ps,U ′[x])

10: fenergy(s)← EnergyCost(B, s)
11: end for
12: for gen do
13: S′ ← GenerateOffspring(S0)
14: for s ∈ S′ do
15: Ps ← TrendPredictor(s)
16: fcomfort(s)← EvalComfort(E ,Ps,U ′[x])
17: fenergy(s)← EnergyCost(B, s)
18: end for
19: F ← NonDominatedSort(S′)
20: S0 ← SelectNextGen(F, pop)
21: end for
22: s∗ ← argmins∈S0

∑
e∈E x.we ∗ fe(s)

23: G← G ∪ {s∗}
24: end for
25: return G

For each event x, a diverse population of pop movement
guidance—each representing a candidate guidance—is ran-
domly generated. Each guidance specifies solution len POIs
as destinations (Line 6). These candidates are evaluated based
on predicted environmental conditions (Line 8), occupant
comfort (Line 9), and energy cost (Line 10). After, the
optimization process iteratively refines the generated guidance
using NSGA-III over gen generations.

In each iteration, the algorithm applies crossover and muta-
tion (Line 13) to introduce variation into the new populations
based on the previous evaluation steps (Lines 16-17) to assess
the effectiveness of each guidance. Since MOO involves con-
flicting objectives and no single solution can simultaneously



optimize all objectives, the algorithm approximates the Pareto
front (Line 19), which is a set of guidance where improving
one objective can inevitably affect another. The selection
process (Line 20) retains the best solutions for the next
iteration.

After multiple generations, the final Pareto front is obtained
with a set of optimal guidance. Among the final Pareto front
solutions, we select the guidance that minimizes a weighted
sum of normalized objective values (Line 22), where each
comfort objective is weighted equally. This ensures a balanced
solution without favoring one comfort type over others or
over energy consumption. The weights can be adjusted by
administrators based on preference priorities.
Computing environmental control guidance plans. While
NSGA-III optimizes movement guidance Gm and Gr, dy-
namic occupant comfort needs and environment changes
introduce further uncertainty. For example, in summer, an
individual arriving from the hot outdoors may initially prefer
a cooler room but later favor a warmer setting. To ad-
dress this, DigiGuide integrates the Environment Optimizer
to dynamically adjust the indoor environment. Based on that,
aggregating occupant comfort needs can effectively regulate
the environment for occupant comfort [18], [28], the optimizer
continuously collects occupant feedback or analyzes their
sensations on factors such as temperature. This feedback
and analysis are then processed to regulate the environment
settings dynamically, such as modifying HVAC settings.

Instead of relying solely on movement-based guidance, lo-
calized environmental adjustments allow occupants to remain
comfortable in their assigned locations, minimizing unneces-
sary movement and improving energy efficiency.

VI. EXPERIMENTAL EVALUATION

In the following, we evaluate DigiGuide in two large-
scale, realistic scenarios: (1) A co-working open space where
occupants take part in diverse activities (individual work and
meetings); (2) An airport where travelers need to wait until
their flights depart. We analyze the impact of DigiGuide on
balancing multiple occupant comfort factors including thermal,
acoustic, crowdedness, and walking distance. With respect to
energy consumption, we focus the analysis on the impact of
DigiGuide on HVAC use, which represents the largest energy
consumer in buildings [29]. Each experiment, which simulates
three complete months during the summer in Paris climate
conditions, is executed five times and the results are averaged.
The experiments are conducted on a Linux server with an Intel
Xeon Silver 4410Y (24 cores, 3.9 GHz) and 128 GB RAM,
running Ubuntu 22.04.

A. Evaluation Scenarios

For both scenarios, we define DTs with their diverse charac-
teristic and occupant profiles/activities, as well as, indoor envi-
ronmental conditions such as static sound levels per each POI
sampled from a normal distribution N(40, 10)dB and indoor
temperature simulated using EnergyPlus, a widely adopted
open-source tool [30]. We also simulate occupant comfort

needs including thermal/noise preferences, crowdedness tol-
erance (see Section III-B), and assign them to occupants
randomly following a normal distribution. Finally, occupants
dynamically influence the indoor environment by: (i) emitting
heat at an average equipment load of 200W with a fraction
radiant of 0.3 [31], indicating the proportion of total emitted
heat; and (ii) creating noise contributions following a normal
distribution N(53, 4)dB (based on [32]).

Scenario 1: Co-working Open Space. We developed a DT
model of the Drahi-X Innovation Center building at École
Polytechnique in France (Figure 3a), which consists of offices
in various sizes: 12 large (25–60 m2), 106 medium (10–25
m2), and 9 small (8–10 m2), along with 8 meeting rooms
(60–200 m2). The space required per occupant varies by room
type: 10 m2 in small/medium offices, 8 m2 in large offices, and
2 m2 in meeting rooms. As a result, small offices accommodate
2–4 occupants, medium offices 5–10, large offices more than
10, and meeting rooms 30–100. To model realistic occupant
movement, large offices and corridors are divided into multiple
POIs placed near entrances.

Fig. 3: Building DTs for evaluation.

Each day, 160 occupants follow work and meeting schedules
based on their profiles (10% are managers, 30% employees
from one department, and the remaining 60% from another).
Their working hours span from 7 AM to 10 PM, with an
average of 10 hours. Meetings occur daily for employee
groups, with some meeting every afternoon and others meeting
with managers twice a week. During individual work, all
comfort factors are equally weighted, whereas in meetings,
we make noise and crowdedness tolerance less important.
Additionally, for individual work, all occupants contribute to
noise levels, while in meetings, we assume that only one
person speaks at a time.

Scenario 2: Airport. We model Terminal 4 of Orly Airport
in France, one of the largest terminals of France’s major
airports, focusing on key areas: three floors, 16 boarding
gates, 40 waiting areas (40–130 m2) on the second floor, and
three VIP lounges on the third floor. Figure 3b illustrates the
Building DT, constructed using Google Maps and official floor
plans [33], [34]. Passengers require at least 1.5 m2 in waiting
areas, while VIP lounges provide quieter environments with a
minimum of 3 m2 per person. Corridors are segmented into
POIs near boarding gates, waiting areas, lounges, lifts, and
stairways to model realistic movement trajectories.



Flight schedules and passenger volumes are derived from
Orly Airport’s daily reports [35]: 100 daily flights (100–200
passengers/flight) totaling up to 20K passengers per day.
Flights are evenly distributed between 7 AM and 11 PM, with
passengers arriving 30–60 minutes before departure. To reflect
real-world behavior, 10% of passengers are designated VIPs
who can access both lounges and waiting areas. Additionally,
30% of passengers per flight are randomly assigned to groups
of 2–5, representing families/friends who prefer to stay to-
gether. Walking distance is measured from a guided waiting
area or lounge to the gate, reflecting real-world preferences
where passengers choose seating near their departure gates.

While our current implementation uses simulated data,
DigiGuide assumes access to commonly available sensing
infrastructures such as WiFi-based localization, ambient sound
monitoring, and temperature sensors. Prior work has demon-
strated the feasibility of collecting such environmental and
occupant data in smart spaces using semantic IoT frame-
works [36], WiFi connectivity traces [37], and crowd-sourced
privacy-aware sensing [38].

B. Baselines and Optimization Comparison

Most works in the literature either regulate the environment
based on occupant feedback (limited to controllable factors
like temperature) or allocate people to spaces focusing solely
on thermal comfort (see Section II). Unfortunately, we were
unable to find code or enough implementation details to
implement the few works that consider a broader notion of
comfort. Thus, we evaluate DigiGuide on two key aspects.

First, we define a baseline (BL) that reflects typical building
operations to assess the improvement of DigiGuide upon
current real-world building management strategies. In the
baseline, occupants move based on their personal goals (e.g.,
find an empty workspace) and the indoor environment is
controlled according to occupant comfort feedback (e.g., by
controlling a thermostat or expressing their comfort using
an app). The baseline simulated realistic occupant movement
using the SmartSPEC trajectory simulator [39]. The baseline
then implements two traditional environmental control strate-
gies [5]: (1) BL-Maj: adjusts environmental conditions (e.g.,
temperature) based on the majority preference of occupants
currently in a room. This approach maximizes the overall
comfort level of all the occupants. (2) BL-Drift: first aggregates
individual preferences to generate an initial control action
(e.g., temperature setpoint). It then gradually adjusts this action
toward a more energy-efficient direction, such as increasing
the temperature setpoint in summer, while aiming to remain
within acceptable comfort bounds.

Second, we examine the effectiveness of the GA-based
MOO approach compared to the Weighted-Sum (WS) method,
a widely used MOO approach [40]. The WS method reduces
multiple objectives into a single function by minimizing a
weighted sum of the performance of all objectives. In the ex-
periments, we assign equal weights to each objective and com-
pare DigiGuide with GA, GA-Maj and GA-Drift (depending

on the specific environmental control strategy implemented),
with DigiGuide with WS, WS-Maj and WS-Drift.

C. Hyperparameter selection

We investigate the impact of hyperparameter selection,
specifically the choice of population sizes and generation
numbers for the NSGA-III algorithm, in terms of energy con-
sumption, comfort, and computational efficiency (execution
time). The timely generation of guidance is vital, as occupants
expect immediate recommendations without excessive delays.
We show in Figure 4 the results for different population sizes
(15, 35, and 70) and generation numbers (20, 50, and 100) on
the algorithm’s performance based on Scenario 1 (the results
for Scenario 2 show a similar trend). Energy consumption and
comfort values are standardized using negated Z-scores

Z ′ = −Z = −x− µ

σ
(8)

where µ represents the average value of energy consumption or
comfort results and σ denotes the standard deviation. Hence,
positive values indicate a better performance than the average.

Fig. 4: NSGA-III performance by different hyperparameters.

Although larger population sizes may enhance guidance per-
formance, as NSGA-III can evaluate and rank more candidate
guidance, they also impose a higher computational cost. We
observe that when it has more than 50 generations and 35
populations, although some optimization is still achieved, the
gains are not substantial enough to justify the additional com-
putational burden. Therefore, considering both performance
and computational efficiency, we select a generation number
of 50 and a population size of 35 as the optimal configuration
for the NSGA-III algorithm in DigiGuide, which on average
takes 1.8 seconds to generate guidance per person.

D. Performance in Evaluated Scenarios

Table II and Table III present the evaluation results for
Scenarios 1 and 2, respectively, including energy consumption
and various comfort metrics: thermal, acoustic, crowdedness,
and walking distance. Lower values across all metrics indicate
better performance.

The results across both scenarios show that DigiGuide,
particularly with GA, generally outperforms BL, in some
situations significantly. While it falls short in crowdedness
(co-working space) and noise comfort (airport), it achieves



Fig. 5: Comparison of energy-comfort trade-offs and comfort metrics in both scenarios.

TABLE II: Co-working open space scenario performance.

BL-Maj BL-Drift WS-Maj WS-Drift GA-Maj GA-Drift
Energy (kwh) 1852.81 1807.83 1810.77 1759.52 1768.39 1725.66
Crowd (lvl) 0.55 0.55 1.34 1.32 0.92 0.95
Acoustic (lvl) 0.13 0.13 1.17 1.00 0.11 0.10
Thermal (TSV) 1.37 1.48 0.74 0.99 0.69 0.86
Distance (m) 60.12 60.12 25.34 28.16 38.75 40.41

TABLE III: Airport scenario performance.

BL-Maj BL-Drift WS-Maj WS-Drift GA-Maj GA-Drift
Energy (kwh) 125.25 122.21 122.41 121.91 116.64 108.64
Crowd (lvl) 0.43 0.43 0.08 0.09 0.10 0.10
Noise (lvl) 0.80 0.80 1.09 1.14 0.95 0.95
Thermal (TSV) 0.29 0.31 0.32 0.33 0.18 0.19
Distance (m) 466.78 466.78 273.54 273.79 336.55 336.55

an average of 18.2% lower discomfort and 8.6% lower energy
consumption than BL, and 11.7% lower discomfort with 5.7%
less energy compared to WS. We also observe that Drift
reduces energy consumption by 2-4% compared to Maj but
leads to a decline in thermal comfort, particularly for WS in
co-working open space where it increases by 25%. In GA
and WS, Drift slightly worsens not only thermal comfort but
also crowdedness and walking distance. This highlights the
effectiveness of DigiGuide (either with GA or WS) in achieving
a balance across all comfort factors, preventing the degradation
of one single factor.

To provide a more intuitive understanding of these results,
Figure 5a and 5b illustrate the balance between energy con-
sumption and overall comfort for each scenario. Since each
comfort metric has a different scale, the energy and comfort
value is computed as negated Z-score and the comfort value
shown in the figure is the summary of the scores across
all comfort objectives. Note that deviations from the average
that are positive show better performance. We can observe
that DigiGuide, both using the GA and WS-based approaches,
achieves the best energy efficiency and overall comfort by
having the largest score for both.

Figures 5c and 5d present the negated Z-score results for
each comfort objective. Notably, all GA values are positive.
Although GA does not outperform others in every objective, it
consistently achieves above-average performance across all of
them. This observation can demonstrate its ability to balance
multiple objectives without over-prioritizing or neglecting any
single factor. On the other hand, performance varies between
the two scenarios. In the co-working open space, GA excels

in acoustic comfort, whereas in the airport, it significantly
improves crowdedness comfort. This discrepancy arises due to
the differences in space utilization and human behavior. For
instance, airports have sparsely occupied waiting areas near
unused gates. Guiding passengers there can reduce crowded-
ness discomfort. Conversely, co-working spaces remain consis-
tently occupied, making quiet and unoccupied locations within
short walking distance harder to find. This emphasizes the
significant differences between scenarios and it is necessary
to have a generic system that can achieve a balance between
conflicting objectives across different scenarios.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces DigiGuide, an innovative occupant
guiding system. By integrating DT methodologies and the ge-
netic algorithm, it generates occupant movement and environ-
mental control guidance. Experiments conducted in two large-
scale scenarios demonstrate the applicability of DigiGuide and
the significant improvement compared to baseline approaches.
By leveraging DT modeling, DigiGuide’s modular design
enables adaptation to various building and occupant scenar-
ios. Our evaluation also reveals that deploying DigiGuide in
different settings requires customizing comfort need factors
with corresponding evaluation methods, and accurate building
and occupant behavior DT modeling. It provides DigiGuide
with the flexibility to accommodate multiple scenarios, while
it also increases customization complexity.

While these results are promising, several directions for
future work remain. First, our current experiments have fo-
cused exclusively on environmental control for temperature.
We plan to extend the evaluation to incorporate additional
systems (such as lighting control) to evaluate our approach
more comprehensively. Second, our solution currently assumes
uniform priority among occupants’ comfort needs within the
same event. Future research will integrate personality traits to
account for the diversity in comfort priorities. By addressing
these areas, future work will further enhance the adaptability
and robustness of DigiGuide.
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